On Error Sums for Square Roots of Positive Integers with Applications to Lucas and Pell Numbers
نویسنده
چکیده
Several types of infinite series are considered, which are defined by a fixed real number α and the denominators and numerators of the convergents of α. In this paper we restrict α to the irrational square roots of positive integers. We express the corresponding error sums in terms of a finite number of convergents. It is shown that an error sum formed by convergents with even indices takes only rational values. Two applications for error sums with α = √ 5 and α = √ 2 are given, where the convergents are composed of Lucas and Pell numbers, respectively.
منابع مشابه
On Pell, Pell-Lucas, and balancing numbers
In this paper, we derive some identities on Pell, Pell-Lucas, and balancing numbers and the relationships between them. We also deduce some formulas on the sums, divisibility properties, perfect squares, Pythagorean triples involving these numbers. Moreover, we obtain the set of positive integer solutions of some specific Pell equations in terms of the integer sequences mentioned in the text.
متن کامل1 INTEGERS 11 A ( 2011 ) Proceedings of Integers Conference 2009 ON THE INTERSECTIONS OF FIBONACCI , PELL , AND LUCAS NUMBERS
We describe how to compute the intersection of two Lucas sequences of the forms {Un(P,±1)}n=0 or {Vn(P,±1)}n=0 with P ∈ Z that includes sequences of Fibonacci, Pell, Lucas, and Lucas-Pell numbers. We prove that such an intersection is finite except for the case Un(1,−1) and Un(3, 1) and the case of two V -sequences when the product of their discriminants is a perfect square. Moreover, the inter...
متن کاملNew families of Jacobsthal and Jacobsthal-Lucas numbers
In this paper we present new families of sequences that generalize the Jacobsthal and the Jacobsthal-Lucas numbers and establish some identities. We also give a generating function for a particular case of the sequences presented. Introduction Several sequences of positive integers were and still are object of study for many researchers. Examples of these sequences are the well known Fibonacci ...
متن کاملOn The Second Order Linear Recurrences By Tridiagonal Matrices
In this paper, we consider the relationships between the second order linear recurrences and the permanents and determinants of tridiagonal matrices. 1. Introduction The well-known Fibonacci, Lucas and Pell numbers can be generalized as follows: Let A and B be nonzero, relatively prime integers such that D = A 4B 6= 0: De ne sequences fung and fvng by, for all n 2 (see [10]), un = Aun 1 Bun 2 (...
متن کاملOn Comparing Sums of Square Roots of Small Integers
Let k and n be positive integers, n > k. Define r(n, k) to be the minimum positive value of | √ a1 + · · ·+ √ ak − √ b1 − · · · − √ bk| where a1, a2, · · · , ak, b1, b2, · · · , bk are positive integers no larger than n. It is an important problem in computational geometry to determine a good upper bound of − log r(n, k). In this paper we prove an upper bound of 2O(n/ logn), which is better tha...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014